CBSE Class 9 Maths

SAMPLE **QUESTION PAPER - 6**

Self Assessment

Time: 3 Hours Maximum Marks: 90

SECTION 'A'

Question numbers 1 to 4 carry one mark each. For each question four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. The $\frac{p}{q}$ form of 0.777....., where p and q are integers, $q \neq 0$ is:

(A)
$$\frac{77}{90}$$
 (B) $\frac{7}{10}$ (C) $\frac{7}{9}$

(B)
$$\frac{7}{10}$$

(C)
$$\frac{7}{9}$$

(D)
$$\frac{77}{99}$$

2. The factors of a3-1 are:

(A)
$$(a-1)$$
, (a^2+a-1) (B) $(a+1)$, (a^2-a+1) (C) $(a+1)$, (a^2-a-1) (D) $(a-1)$, (a^2+a+1)

3. In the figure AB || CD, find the value of x.

(A) 100°

(B) 120°

(C) 80°

(D) 110°

4. The degree of the polynomial $(5-x^3)(x^2+3x+2)$ is:

(A) 5

(B) 3

(C) 4

(D) 1

SECTION 'B'

Question numbers 5 to 10 carry two marks each.

- 5. Express $\frac{2157}{625}$ in decimal form and state whether it is teminating or not.
- 6. Evaluate: 249 × 251 by using indentities
- Factorise: 343p³ 1331b³.
- In figure, AE = DF, E is the mid-point of AB and F is the mid-point of DC. Using an Euclid's axiom, show that AB = DC.

9. In the given figure $m \parallel n$ and $p \parallel q$. If $\angle 1 = 75^\circ$, then prove that $\angle 2 = \angle 1 + \frac{1}{3}$ of right angle.

 The sides of a triangle are 5 cm, 12 cm and 13 cm. Find the length of perpendicular from the opposite vertex to the side whose length is 13 cm.

SECTION 'C'

Question numbers 11 to 20 carry three marks each.

11. Express $0.3\overline{28}$ in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

12. Simplify
$$\left[5 \left\{ \left(\frac{1}{8} \right)^{\frac{1}{3}} + \left(\frac{1}{27} \right)^{\frac{1}{3}} \right\} \right]^2 \right]^{\frac{1}{4}}$$

13. If $\left(x + \frac{1}{x}\right) = 3$, find the value of $x^3 + \frac{1}{x^3}$.

OR

If $p(x) = x^3 + 3x^2 - 2x - 4$, find the value of p(-2) + p(1) + p(0)

- 14. Factorise: $7(2x-y)^2 25(2x-y) + 12$
- 15. In the given figure, $PQ \perp PS$, $PQ \mid | SR$, $\angle SQR = 28^{\circ}$ and $\angle QRT = 65^{\circ}$. Find the values of x, y and z.

Read the following statement:

- "A square is a polygon made up of four line segments, out of which, length of three line segments are equal to the length of fourth one and all its angles are right angles."
- (i) Define the terms used in this definition which you feel necessary. Is there any undefined term in this? Can you justify that all angles and sides of a square are equal?

(ii) Which mathematical concept is used in this problem?

(iii) What is its value?

16. Sides AB and AC of triangle ABC are extended to P and Q respectively. If $\angle PBC < \angle QCB$, prove that AC < AB.

17. In the given figure, AB = AC, BP = PC. Prove that $\angle ABP = \angle ACP$.

18. In the figure, prove that CD + DA + AB + BC > 2AC

19. In the figure, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a:b=2:3, find the value of c.

20. A park, in the shape of a quadrilateral ABCD has $\angle C = 90^{\circ}$, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?

SECTION 'D'

Question numbers 21 to 31 carry four marks each.

21. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, find $x^2 + y^2$.

OR

Prove that:
$$\left(\frac{x^{a^2}}{x^{b^2}}\right)^{\frac{1}{a+b}} \left(\frac{x^{b^2}}{x^{c^2}}\right)^{\frac{1}{b+c}} \left(\frac{x^{c^2}}{x^{a^2}}\right)^{\frac{1}{c+a}} = 1$$

- 22. If $x = \frac{1}{2 \sqrt{3}}$, find the value of $2x^2 + 7x + 5$.
- 23. By using factor theorem, factorise: $x^3 + x^2 4x 4$.
- 24. Without actual division, show that $f(x) = 2x^4 6x^3 + 3x^2 + 3x 2$ is exactly divisible by $x^2 3x + 2$.
- 25. Given a + b + c = 5, ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 3abc = -25$
- 26. (i) Plot the points (x, y) given in the following co-ordinating table on the plane choosing suitable units of distance on the axes.

x	-2	-1	0	1	3
¥	8	7	-1.25	3	-1

- (ii) Which mathematical concept is used in this problem?
- (iii) Which value is depicted in this problem?
- 27. In the given figure, $\angle ACD = \angle ABC$ and CD bisect $\angle BCD$. Prove that $\angle APC = \angle ACP$.

28. In the given figure, AC = AE, AB = AD, $\angle BAD = \angle EAC$. Show that BC = DE.

In the given figure, AB = AC, $AD \perp BC$, E is the mid-point of BD and F is the mid-point of DC. Prove that: $\triangle ABE \equiv \triangle ACF$

- 29. l and m are two parallel equal lines intersected by another pair of parallel lines p and q (see figure):
 - (i) Show that : ΔABC ≡ ΔCDA.
 - (ii) Which mathematical concept is used in this problem?
 - (iii) What is its value?

30. In figure, $\angle ACB$ is a right angle and AC = CD and CDEF is a parallelogram. If $\angle FEC = 10^{\circ}$, then calculate $\angle BDE$.

31. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m, and 120 m (see figure). The advertisements yield an earning of ₹ 5000 per m² for year. A company hired one of its walls for 3 months. How much rent did it pay?

